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MECHANISMS OF PHOTOCHEMICAL REACT&ONS OF TRANSITION METAL COMPLEXES:
EXCITED STATE ELECTRON TRANSFER AND ORGANOMETALLIC PHOTOCHEMISTRY

MARK S. WRIGHTON
Department of Chemistry .
Massachusetts Institute of lechnolo
CaﬁBriggg. Massachusetts 02139 IUS%;

Abstract: This article summarizes two major areas of research, electron transfer
and organometallic photochemistry, addressed during the last dozen or so years.
The article emphasizes aspects of the mechanisms of photochemical reactions of
transition metal complexes in these two areas. Excited state electron transfer
and photoreactions of organometallic complexes have been, and will be, major
areas of research opportunity. Practical applications may come in the fields of
energy conversion and catalysis.

Inorganic photochemistry is a field that once focused on the substitution
and redox‘chemistny of Werner complexes in aqueous media.l Now, the field
includes significant contributions involving many classes of compounds involving
many different types of one-electron excited states.2 In this retrospective
view I shall focus on two areas of the field where remarkable progress has been
made and where much can be expected in the future: excited state electron

transfer and organometallic photochemistry.

Electron Transfer To and From Photoexcited Metal Complexes. The fact that a

photoexcited molecule can be a more potent oxidant and a more potent reductant
than the ground state can, in principle, be exploited to effect the conversion
of 1ight to chemical and/or electrical energy. No additional evidence beyond
the knowledge that natural photosynthesis works is needed to establish that
photochemical energy conversion is a practical possibility. For inorganic
.photochemists a 1972 report3 by A.W. Adamson and H.D. Gafney on Ru(bpy)32+
(bpy = 2,2'-bipyridine) can be regarded as the initial stimulation for an

enormous thrust in research of excited state electron transfer reactions of
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| metal complexes. Much of the research has been carried out with the hope of
_& being able to sensitize the oxidation and reduction of Hp0 to effect the
iéf generation of fuel (Hp and 07) from H20 and sunlight. The research has involved
§§ some of the most active groups in inorganic photochemistry and many reviews have
- appeared from these groups in recent years.4-9
} ‘ The research of excited state electron transfer 6f metal complexes has
%ﬁ_ . involved not only Ru(bpy)32* and related Os species, but aiso complexes having
P metal-metal bonds such as ne2c182-1° and Ph3SnRe(C0)3(1,10"-phenanthroline),ll
ig as well as high nuclearity systems such as MogCys2-.12 A feature that these
08 systems have in common is that the lowest excited state is relatively long-lived
ia and generally émissive in fluid solution at room temperature. The long lifetime
% is essential to the ability to efficiently quench the excited species in a
bt bimolecular reaction, equation (la) or (1b). The discovery of a 1ar§e number of
M* + Qq— MY+ Q- (1a)
M* + Qg — M-+ Qo (1b)

long-1ived photoexcited transition metal complexes in the past dozen years has

been crucial to the development of the present understanding of the various

" excited state processes in general, and in particular, has allowed the detailed

;
Zgz investigation of bimolecular electron transfer reactions.

i?; Studfes of the electron transfer quenching of excited metal complexes has

éé revealed a great deal about the properties of the metal complexes, but there has

; J been only 1imited success in sensitizing the sustained formation of high energy

g% redox products such as Hz and 02 from Hp0. Generally, the excited complexes are

E@ only one-electron transfer reagents, while the desired products require more

?é than one electron per molecule formed. The basic difficulty stems from the fact
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that the ultimate formation of energy-ricti redox products invglves a primary
one-electron step as in equation (la) or (1b). The primary products M* + Q;~ or
M= + Q2* are thermodynamically unstable as desired, but unfortunately, the
primary products are generally labile and r'gact rapidly according to equations

(23) and (2b). So-called back reactions of this kind degrade optical energy to
M* + Q=— M + Q1 + heat (2a)
M- + Q2 — M + Q2 + heat (2b)

heat. There are many schemes where a sacrificial reagent such as EDTA allows the

generation of Hp as in equations (3)-(6). In this scheme MV2+ is N,N'-dimethyl-

Ru(bpy )32+ AN [Ru(bpy)32+]* (3 ‘
[Ru(bpy)32+]* + W2 MY+ + Ru(bpy)33+ (4)
Ru(bpy)33*+ + EDTA — Ru(bpy)32* + oxidation product(s) (5)
MV* + Satalyst | MV2* + 1/2H) (6)

4,4' -bipyridinfum and the catalyst can be a high surface area suspension of Pt.
In this complicated, 'but now familiar, scheme the EDTA 1s irreversibly oxidized
by the primary, photogenerated oxidant Ru(bpy)33* to regenerate Ru(bpy)32*,

precluding back reaction with the reductant MV* that can be used to generate Hj
via a c'atalyzed process, equation (6). Unfortunately, Hz generation occurs ai

the expense of EDTA. In such a case it is not even evident that the net

sensitized reaction is an overall up-hill process.

The Ru(bpy)33* formed in the quenching step, equation (4), is a sufficiently
potent oxidant that H20 could be oxidized to 02, but this four-electron process,
1ike H2 evolution; requires catalysis. A catalyst system that will |
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33 allow the use of H20 as the only sacrificial reagent in the photosensitized
; formatioh of Hy and 02 has not yet been devised. The photosynthetic syster uses -
é} CO2 and Hy0 as sacrificial reagents to effect formation of reduced carbon
gi compounds and 0z. A key to the efficiency of the photosynthetic system is
likely the structured arrangement of the components of the pﬁotosynthetic
< apparatus that cannot be imitated by homogeneously dissolved complexes. The
;' natural apparatus is arranged such that back reaction of early high-energy redox
5 products is inhibited. Transition metal complexes that efficiently absorb light
iv and undergo electron transfer processes to give energetic redox products exist.
2 But inhibiting back reaction Has not been achieved with molecular-based systems.
3 This problem is of paramount significance and is the key to success in photo-
; chemical energy conversion. Future work will likely be directed toward inter-
i‘ facial systems where some success has already been realized, as at '
é semiconductor/1iquid electrolyte interfaces.13
2 While the practical objective of energy conversion has not yet been
]
»

realized, the area of excited state electron transfer will remain active in
order to continue the establishment of the basic properties of excited states.

Additional application areas may inciudeAimaging systems and stoichiometric

synthesis, both of which may prove easier to achieve than largescale energy

conversion systems. In many situations it will be necessary to synthesize

‘)J-‘

, organized assemblies, in order to achieve desired results; this will be

especially important to achieve efficient photochemical energy conversion.

Y

3 Organometallic Photochemistry. Organometallic complexes have been the object of
g fntense study in several major research groups. Much of the work has been

M carried out with the underlying objective of synthesizing new catalysts and

3 reactive intermediates. The photoinduced reductive elimination of Hz from

: di- and polyhydrides to generate coordinatively unsaturated species (typically
N

[ PRT TP . . o’ e b, YRR S I T AT S N . P
X AR 1 TR S 0 AT 0 MY PR GO0 2O R A AN AA I

oy Cant g
L L R AR RN £ Ny ¥




R g ? v A ir Bl A Rl K v P AT WV TP TR TR AT

-5-

A Y drid e
- et s

16 e~ complexes) has been established as a major photoreaction class.l4
Additionally, M-M bond cleavage has been established as a general photoreaction

class for complexes having 2 e~ M-M bonds,l5 e.g. Mna(C0)qg, to give 17 e-

radicals and more recently 15 e~ radicals from Pd-Pd cleavage in Pdp(CNR)g2+,16

However, as for many classical Werner comp1exes,1 ligand photosubsfitution of

65
=

organometallic complexes, and especially of metal carbonyls, has been the most

SN e et

'3 - active area of organometallic photochemistry.l7 In the case of organometallic-
complexes, though, the photosubstitutfon chemistry is being extended to the
study of high nuclearity clusters such as HqRugq(C0)12.18 Two of the dominant

,‘
L gL P

themes in organometallic photochemistry that will continue to thrive are low ﬂ

N : temperature photochemistry and catalysis.

_1 The application of low temperature matrix photochemistry techniques to
organometallic complexes has proven fruitful in characterizing photogenerated
intermediates and in establishing mechanisms of photochem%ca1 reactions at room

temperature. Early experiments concerned the study of M(CO)g by R.K. Sheline

S el b T

and co-workers.19 In the early 1970's J.J. Turner and his co-workers made

significant contributions showing that a large number of mononuclear metal

PP

carbonyls, XYM(CO),, lose CO to give coordinatively unsaturated, typically 16
e, complexes, XYM(CO),.1, that can be spectroscopically characterized in rigid
matrices.20 Many additional reports have followed that directly establish the

nature of the intermediates in room temperature photoreactions.2l Recent

attention has turned to di-,22 tri-,23 and tetranuclearl8 clusters with the

= 4

LI o

first examples of the photogeneration of coordinative unsaturation in higher .
nuclearity clusters. These results are of possible consequence due to the
belief that clusters may serve as models for heterogeneous metallic catalysts.

% The combination of low temperature photolysis followed by warm-up can lead

to direct observation of the elementary steps in a room temperature




LR

St il 5]

TR P
"~

et S

- -
BT A E

-

- .
Kb

) LRAARL A

&0t

N EPRTRN ) XK

-

photoreaction. A simple example is to warm a photogenerated 16 e~ species in
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the presence of a 2 e~ donor ligand to observe the generation of a net photo-

substitution product. The unimolecular reaction represented by equation (7) has

(n5-C5Hg)W(C0)3CoHs v, trans-(n5-CgHg)W(CO)2(CoHg ) (H) + CO  (7)

been shown24 to proceed via primary loss of CO to give a 16 e~ species that can
be detected at 77 K. The 16 e~ species gives the final product thermally upon
warming to 196 K with a t;/2 ~ 10 s. Such chemistry can also be monitored when
the organometallic species is anchored to a surface.25 The exciting prospect for
surface-bound molecules is that it may be possible to selectively generate active
sites on surfaces and to study interfacial reactions with molecular specificity.
In a more complex situation, the bimolecular photochemistry represented by

equation (8) has been shown26 to proceed via (1) photochemical loss of CO,
Et3SIC0(CO)4 + Ph3STH —— Ph3$iCo(CO)q + Et3SiM (8)

(i1) thermal oxidative addition of Ph3SiH, (iii) thermal reductive elimination of
Et3SiH, and (iv) thermal uptake of CO. Each of the intermediates has been
observed spectroscopically. Such systems establish that relatively complex
photoreaction mechanisms can be established. It is likeiy that the methodology
can be used to establish the viability of catalytic cycles. The essential is
that there be a thermain inert, but photolabile precursor to each proposed
intermediate. A start has been made in the observation of all intermediates in
the Fe(CO)s-photocatalyzed isomerization of alkenes,2” and in catalyzed reactions
of alkynes using carbene complexes,28 |

Concerning catalysis, it is worth noting the application of organometallic
photochemistry in the discovery of the first examples of addition of simple
alkanes, RH, to discrete metal complexes, equations (9)29 and (10).30 These
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(n5-CgMes) Ir(PMe3) (H), %%}-* (n5-CgMeg) Ir(PMe3) (R)(H) + Hpy  (9)

oi ark

L yb 0

(n5-CsMes) Ir(CO) 7 gﬁ_» (n5-CgMes) Ir(COMR)(H) + CO (10}

reactions proceed, presumably, via primary loss of Hp and CO, respectively, to
give very active 16 e~ species. These systems mq} provide the basis for
photochemical functionalization of alkanes.

The future of organometallic photochemistry is bright. New, detailed

-

e W R e
oy o .

understanding of electronic structure of complexes having unusual geometrical

o

structures will lead to new photochemistry in that new intermediates can be

ALy

generated from the common ligand extrusion or metal-metal bond cleavage

{ 4 reactions. Additionally, the applicapion of fast kinetic techniques, especially
those employing molecular specific diagnostics, in this area will prove very

A fruitful in unravelling mechanisms of stoichidmetric and catalytic reactions. A

conscious effort to discover new photoreactions will likely be very fruitful

inasmuch as there are major classes of organometallic complexes that have not

been systematically investigated.

EFer?
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